import pandas as pd
pwd
# read file from file system
df=pd.read_csv('bevolkerung.csv’)
# read file from github
from pandas import Series, DataFrame
url1 = 'https://raw.githubusercontent.com/spribylova/Data/master/Assets.csv'
assets = pd.read_csv(url1,index_col=0)
url2 = 'https://raw.githubusercontent.com/spribylova/Data/master/Firmen.csv'
firmen = pd.read_csv(url2,index_col=0)
banks = pd.merge(assets, firmen, on='IN')
banks.describe()
banks
import matplotlib.pyplot as plt
import numpy as np
# summary statistics to describe numeric fields of uploaded file
# data is file are for 2 years /January 1998 - December 1999/ , provided is number of inhaitants in Zurich, Month, Day, Gender, Age group, Origin, District name, District code, number of inhabitants
df.describe()
df.groupby(['StichtagDatJahr', 'KreisCd'])['AnzBestWir'].sum().reset_index()
df3=df.groupby(['KreisCd'])['AnzBestWir'].sum().reset_index()
df3.sort_values(by=['KreisCd’])
df3.plot.bar(x="KreisCd", y="AnzBestWir”);
# Chart the ratio of foreigners within the total population in Kreis 2 over time # vorbereitet filter fur Kreis 2
filt2 = df2['KreisCd'] == 2
df2=df.groupby(['KreisCd', 'HerkunftLang'])['AnzBestWir'].sum().reset_index()
df2.where(filt2, inplace = True)
# using dropna() function
df4=df2.dropna(how = 'all’)
df4
# using dropna() function
df2.dropna(how = 'all’)
Comments