top of page

PySpark - Data Frame Basic Operations in Google Colaboratory


# PySpark - Data Frame

!pip install pyspark

pip install findspark

import findspark

# Use pandas to import csv

import pandas as pd

type(pd.read_csv('Assets.csv'))

import os

from pyspark import SparkContext

from pyspark.sql import SQLContext

from pyspark import SparkConf

conf = SparkConf()

findspark.init()

import pyspark # only run after findspark.init()

from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

from pyspark.sql import SparkSession

import sys

# Wget is a free GNU command-line utility tool used to download files from the internet.

# Install oped JDK 8 for PySpark

!apt-get install openjdk-8-jdk-headless -qq > /dev/null

from pyspark import SparkConf

conf = SparkConf()

master=conf.setMaster('yarn-client')

app=conf.setAppName('anaconda-pyspark')

conf.set('yarn-client', 'anaconda-pyspark') # Optional configurations

spark=SparkSession.builder.appName('Practise').getOrCreate()

pyspark

df=spark.read.csv('Assets.csv')

df=spark.read.option('header','true').csv('Assets.csv')

type(df)

df.printSchema()

df

# Display PySpark dataframe 3 rows

df.show(3)

df.describe().show()

### FILTER

### Rows of the bank names with year equal to 2017

df.filter("Year=2017").show()

# Max by Aggregation

df.groupBy('Bank Name').agg({'Employees':'sum'}).show()

# Sum by Aggregation

group_data = df.groupBy("Bank Name")

group_data.agg({'Employees':'sum'}).show()

# Change name of columns with alias

df.select(countDistinct("Employees").alias("Distinct Employees")).show()

# Use 2 decimal places

from pyspark.sql.functions import format_number

sales_std = df.select(stddev("Employees").alias('std'))


# format_number("col_name",decimal places)

sales_std.select(format_number('std',2).alias('std_2digits')).show()











https://www.guru99.com/pyspark-tutorial.html

https://medium.com/swlh/pyspark-on-macos-installation-and-use-31f84ca61400

https://stackoverflow.com/questions/63216201/how-to-install-python3-9-with-conda

https://docs.anaconda.com/anaconda-scale/howto/spark-configuration/#scale-spark-config-sparkcontext

https://docs.datastax.com/en/jdk-install/doc/jdk-install/installOpenJdkDeb.html

https://docs.anaconda.com/anaconda-scale/howto/spark-configuration/

https://www.dataquest.io/blog/pyspark-installation-guide/

https://notadatascientist.com/install-spark-on-macos/


14 views0 comments

Recent Posts

See All

Python - Basic regression comparison

Regression models are the principles of machine learning models as well. They help to understand the dataset distributions. The objective...

Comments


bottom of page