top of page

Python - Sentiment Analytics - Tweepy


There are many areas, how sentiment analytics could bring better business performance. Python offers various approaches to sentiment and polarity. We can examine webpages, stocks, libraries, books or twitter feed and see e.g. how positive, negative or neutral were texts about UBS. Lets try to understand e.g. the lastest tweets about UBS, they speak a lot about fintech, future, challenge, sharing and innovation as well. 72% Tweets about UBS are positive and only 1% is negative.


1.


# install and import


pip install tweepy

import tweepy

pip install TextBlob

from textblob import TextBlob

pip install wordcloud

from wordcloud import WordCloud

import pandas as pd

import numpy as np

import re

import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight')

import csv

import datetime


2.


# log in to developers account


consumer_key = "xxx"

consumer_secret = "xxx"

access_token = "xxx"

access_token_secret = "xxx"


auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)


3.


# download and clean text


posts=api.user_timeline(screen_name="UBS", lang="en", count=100, tweet_mode="extended")



for tweet in posts[0:5]:

print(tweet.full_text + '\n')



print("Show results \n")

i=1

for tweet in posts[0:5]:

print(str(i)+ ') '+ tweet.full_text + '\n')

i=i+1



df= pd.DataFrame([tweet.full_text for tweet in posts], columns=['Tweets'])



df.head()



def cleanTxt(text):

text=re.sub(r'@[A-Za-z0-9]+','',text)

text=re.sub(r'#','',text)

text=re.sub(r'https','',text)

return text



df['Tweets']=df['Tweets'].apply(cleanTxt)



df



4.


# calculate score


def getSubjectivity(text):

return TextBlob(text).sentiment.subjectivity


def getPolarity(text):

return TextBlob(text).sentiment.polarity


df['Subjectivity']=df['Tweets'].apply(getSubjectivity)


df['Polarity']=df['Tweets'].apply(getPolarity)


df


5.


# print wordcloud


allWords= ' '.join([twts for twts in df['Tweets']])

wordCloud= WordCloud(width=500, height=300,random_state=21,max_font_size=110,background_color="white", colormap="binary").generate(allWords)

plt.imshow(wordCloud,interpolation="bilinear" )

plt.axis('off')

plt.show()




6.


def getAnalysis(score):

if score < 0:

return 'Negative'

elif score == 0:

return 'Neutral'

else:

return 'Positive'

df['Analysis']=df['Polarity'].apply(getAnalysis)

df



7.


# Printing positive tweets


print('Printing positive tweets:\n')

j=1

sortedDF = df.sort_values(by=['Polarity']) #Sort the tweets

for i in range(0, sortedDF.shape[0] ):

if( sortedDF['Analysis'][i] == 'Positive'):

print(str(j) + ') '+ sortedDF['Tweets'][i])

print()

j= j+1


8.


# Printing negative tweets


print('Printing negative tweets:\n')

j=1

sortedDF = df.sort_values(by=['Polarity'],ascending=False) #Sort the tweets

for i in range(0, sortedDF.shape[0] ):

if( sortedDF['Analysis'][i] == 'Negative'):

print(str(j) + ') '+sortedDF['Tweets'][i])

print()

j=j+1



9.


# Plotting sentiment


plt.figure(figsize=(8,6))

for i in range(0, df.shape[0]):

plt.scatter(df["Polarity"][i], df["Subjectivity"][i], color='Blue')

# plt.scatter(x,y,color)

plt.title('Sentiment Analysis')

plt.xlabel('Polarity')

plt.ylabel('Subjectivity')

plt.show()




10.


# Print the percentage of positive tweets


ptweets = df[df.Analysis == 'Positive']

ptweets = ptweets['Tweets']

ptweets


round( (ptweets.shape[0] / df.shape[0]) * 100 , 1)


11.


# Print the percentage of negative tweets


ntweets = df[df.Analysis == 'Negative']

ntweets = ntweets['Tweets']

ntweets


round( (ntweets.shape[0] / df.shape[0]) * 100, 1)


12.


# Show the value counts


df['Analysis'].value_counts()


13.


# Plotting and visualizing the counts


plt.title('Sentiment Analysis')

plt.xlabel('Sentiment')

plt.ylabel('Counts')

df['Analysis'].value_counts().plot(kind = 'bar')

plt.show()








References:


55 views0 comments

Recent Posts

See All

Python - Basic regression comparison

Regression models are the principles of machine learning models as well. They help to understand the dataset distributions. The objective...

Comments


bottom of page