top of page

Python - Triplets, Coprime and Prime numbers


Lets remember some easy calculation, either prime numbers, coprime numbers or triplets are important part of a base for more sophisticated solutions. We can use triplets for arrays and vectorization. Coprime numbers can be used in cryptography, gear wear and circle theories. Prime numbers in Dirichlet prime number theorem or the Riemann hypothesis.



# 1. Triplets


# 1.1 Python code to create triplets from list of words


list_of_words = ['UBS', 'Bank', 'Finance', 'is', 'for']


List = [list_of_words[i:i + 3]

for i in range(len(list_of_words) - 2)]


print(List)


# 1.2 - Python code to find triplet numbers combinations for given sum


from itertools import combinations


def findTriplets(lst, key):

def valid(val):

return sum(val) == key

return list(filter(valid, list(combinations(lst, 3))))


lst = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print(findTriplets(lst, 10))


lst = [1, 2, 3, 4, 5]

print(findTriplets(lst, 8))




# 2. Coprime numbers


# 2.1 Coprime numbers True / False


# Two integers are coprime ( = relatively prime, mutually prime ) if their highest common factor HCF ( greatest common divisor GCD ) is only 1


# Coprime pair example - numbers 5 and 9. The factors of 5 are 1 and 5. The factors of 9 are 1, 3, and 9. The factor that is common to both 5 and 9 is 1. GCF of (5, 9) = 1. Thus, (5, 9) is a co-prime pair.


# not Coprime pair - numbers 6 and 10. The factors of 6 are 1, 2, 3, and 6. The factors of 10 are 1, 2, 5, and 10. Factors that are common to both 6 and 10 are 1 and 2. So GCF (6, 10) = 2. Thus, (6, 10) is NOT a co-prime pair.


# Python code to evaluate if two numbers are coprime


def HCF(p,q):

while q != 0:

p, q = q, p%q

return p



def is_coprime(x, y):

return HCF(x, y) == 1



print(is_coprime(5, 9))# True

print(is_coprime(6, 10))# False

print(is_coprime(17, 13))# True

print(is_coprime(17, 21))# True

print(is_coprime(15, 21))# False

print(is_coprime(25, 45))# False

print(is_coprime(13, 93))# True

print(is_coprime(13, 14))# True


# 3. Prime numbers


# 3.1 Prime numbers plotted on polar coordinates


# An integer is prime if fractal without remaining is only 2 numbers: 1 and the number itself



import math

import sympy

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

%config InlineBackend.figure_format='retina'

plt.style.use('seaborn-whitegrid')



# Generate prime numbers


print(list(sympy.primerange(0, 100)))


[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]


def get_coordinate(num):

return num * np.cos(num), num * np.sin(num)


get_coordinate(1)


(0.5403023058681398, 0.8414709848078965)


x = np.arange(1, 10)

get_coordinate(x)


(array([ 0.54030231, -0.83229367, -2.96997749, -2.61457448, 1.41831093, 5.76102172, 5.27731578, -1.16400027, -8.20017236]),

array([ 0.84147098, 1.81859485, 0.42336002, -3.02720998, -4.79462137, -1.67649299, 4.59890619, 7.91486597, 3.70906637]))



def create_plot(nums, figsize=8, s=None, show_annot=False):

nums = np.array(list(nums))

x, y = get_coordinate(nums)

plt.figure(figsize=(figsize, figsize))

plt.axis("off")

plt.scatter(x, y, s=s, color = 'black')

plt.show()



# If you plot prime numbers to coordinates,it creates spiral. But the pttern of spiral, which is created from positive integeres is still more significant.


# Hence of course, not all the integers are positive.


primes = sympy.primerange(0, 500)

create_plot(primes)



primes = sympy.primerange(0, 20000)

create_plot(primes, s=1)



primes = sympy.primerange(0, 400000)

create_plot(primes, s=0.15)





# Range of positive integers in coordintes has more significant spiral


nums = range(1000)

create_plot(nums)






Resources:



63 views0 comments

Recent Posts

See All

Python - Basic regression comparison

Regression models are the principles of machine learning models as well. They help to understand the dataset distributions. The objective...

Comments


bottom of page