The purpose of this contribution is to test animated graphs in Python and Google Colaboratory. Presentation of animated data is useful part of story telling and looks on the webpage very good. We can use animated graphs to present time trends, movement in an array or any other graph evolution such as thermal reaction. At the end we can present our animation in Html or in rc (runtime configuration, default) format and save it e.g. to gif file by pillowwriter tool.
1. Present the time trend — Sinus, cosinus and their phase
Install and import the needed libraries.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
Create frames for graphs and fill them by data.
# create a figure and axes
fig = plt.figure(figsize=(12,5))
ax1 = plt.subplot(1,2,1)
ax2 = plt.subplot(1,2,2)
# set up the subplots as needed
ax1.set_xlim(( 0, 2))
ax1.set_ylim((-2, 2))
ax1.set_xlabel('Time')
ax1.set_ylabel('Magnitude')
ax2.set_xlim((-2,2))
ax2.set_ylim((-2,2))
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_title('Phase Plane')
# Create objects that will change in the animation.
# Initially empty, have new values in the animation.
# matplotib basic colors for point: k for black, w for white
# matplotib css colors for lines: silver, tan, grey
txt_title = ax1.set_title('')
line1, = ax1.plot([], [], 'silver', lw=2)
# ax.plot returns a list of 2D line objects
line2, = ax1.plot([], [], 'tan', lw=2)
pt1, = ax2.plot([], [], 'k.', ms=20)
line3, = ax2.plot([], [], 'grey', lw=2)
ax1.legend(['sin','cos']);
Define the animation function and fill sequentionaly.
def drawframe(n):
x = np.linspace(0, 2, 1000)
y1 = np.sin(2 * np.pi * (x - 0.01 * n))
y2 = np.cos(2 * np.pi * (x - 0.01 * n))
line1.set_data(x, y1)
line2.set_data(x, y2)
line3.set_data(y1[0:50],y2[0:50])
pt1.set_data(y1[0],y2[0])
txt_title.set_text('Frame = {0:4d}'.format(n))
return (line1,line2)
Create animation object.
from matplotlib import animation
# blit=True updates only the changed parts
anim = animation.FuncAnimation(fig, drawframe, frames=100, interval=20, blit=True )
Render and display animation by HTML or by rc.
# 1. render and display the desired animation by HTML
from IPython.display import HTML
HTML(anim.to_html5_video())
# 2. render and display the desired animation by rc
from matplotlib import rc
# equivalent to rcParams['animation.html'] = 'html5'
rc('animation', html='html5')
anim
Save animation to gif. Fps parameter will set up gif speed.
from matplotlib.animation import FuncAnimation, PillowWriter
# save animation at 20 frames per second
anim.save("sincos.gif", dpi=250, writer=PillowWriter(fps=20))
2. Animated lines
Create 3 lines in an array and save to gif.
# create 3 lines
x1 = np.arange(2, -3, -0.04)
y1 = np.arange(2, -3, -0.04)
x2 = np.arange(3.9, -2, -0.04)
y2 = np.arange(0, 1, 0.01)
x3 = np.arange(0, 1.8, 0.018)
y3 = np.array(x3**2)
fig,ax = plt.subplots()
def animate(i):
ax.clear()
ax.set_xlim(-4,4)
ax.set_ylim(-4,4)
ax.set_title('3 Lines')
line, = ax.plot(x1[0:i], y1[0:i], color = 'black', lw=1)
line2, = ax.plot(x2[0:i], y2[0:i], color = 'tan', lw=1)
line3, = ax.plot(x3[0:i], y3[0:i], color = 'grey', lw=1)
point1, = ax.plot(x1[i], y1[i], marker='.', color='black')
point2, = ax.plot(x2[i], y2[i], marker='.', color='tan')
point3, = ax.plot(x3[i], y3[i], marker='.', color='grey')
return line, line2, line3, point1, point2, point3,
ani = FuncAnimation(fig, animate, interval=40, blit=True, repeat=True, frames=100)
ani.save("lines.gif", dpi=300, writer=PillowWriter(fps=25))
Use HTML to render.
HTML(ani.to_html5_video())
4. Thermal reaction
Use other syntaxes to display more interesting reactions.
5. References
https://scipython.com/blog/a-simple-two-dimensional-brownian-motion-animation/
https://towardsdatascience.com/animated-visualization-of-brownian-motion-in-python-3518ecf28533
https://stackoverflow.com/questions/68960005/saving-an-animated-matplotlib-graph-as-a-gif-file-results-in-a-different-looking
https://jckantor.github.io/CBE30338/toc.html
https://jckantor.github.io/CBE30338/A.03-Animation-in-Jupyter-Notebooks.html
https://jckantor.github.io/CBE30338/A.02-Modular-Approach-to-Simulation-using-Python-Generators.html
https://stackoverflow.com/questions/25333732/matplotlib-animation-not-working-in-ipython-notebook-blank-plot
https://codeburst.io/storytelling-using-animation-in-plotly-1f50a856ba5
https://towardsdatascience.com/animated-bar-plot-in-python-for-time-series-data-8809dbdf9bc
https://veeraldoesdata.com/animated-how-to
https://www.askpython.com/python/examples/animating-data-in-python
https://stackoverflow.com/questions/62335385/animating-a-line-plot-over-time-in-python
https://scipython.com/book2/chapter-7-matplotlib/examples/animating-a-bouncing-ball/
https://matplotlib.org/stable/api/animation_api.html
https://stackoverflow.com/questions/49841865/how-to-animate-multiple-balls-python
https://scipython.com/book2/chapter-7-matplotlib/examples/
https://scipython.com/book2/
https://plotly.com/python/v3/filled-area-animation/
コメント