top of page

Python - Time Series Forecast - 4. Decomposition

There are many types of time series based on data: additive, multiplicative, other temporal structures. Before time series forecast we must identify data types and remove seasonality, prepare stationarity. Time series decomposition is a technique that splits a time series into several components, each representing an underlying pattern category, trend, seasonality, and noise. Classical regressions such as Arima, etc. will provide the basic overview and deep learning algorithms will present more sophisticated approach. The file for time decomposition is providing daily shares volumes for Apple company.


Time Series Forecast Steps:


1. Identification of time series type

2. Seasonality tests

3. Stationarity tests

4. Decomposition

5. Regression

6. Deep learning



4. Decomposition



pip install pandas-datareader


import pandas_datareader.data as web

import datetime



import pandas as pd

pd.set_option('display.max_columns', None)

pd.set_option('display.max_rows', None)


import datetime



pip install seaborn


import seaborn as sns


sns.set()


pip install statsmodels


# remove time series trend


import pandas as pd

import numpy as np

import matplotlib.pyplot as plt


%matplotlib inline


apple_volume = pd.read_csv("Apple.csv", index_col=0, parse_dates=True)

apple_volume.head()


# Select only particular columns of my interest

# apple_volume = pd.DataFrame(apple_volume, columns = ['Date', 'Volume'])

apple_volume=apple_volume.groupby(['Date'])['Volume'].sum().reset_index()


apple_volume.head()


apple_volume.index = pd.to_datetime(apple_volume['Date'], format='%Y-%m-%d')


del apple_volume['Date']


apple_volume.groupby(by=[apple_volume.index.month, apple_volume.index.year])

# or

apple_volume.groupby(pd.Grouper(freq='M')) # update for v0.21+


apple_volume.head()


# applying the groupby function on df

apple_volume= apple_volume.groupby(pd.Grouper(axis=0,freq='M')).sum()


apple_volume.plot(figsize=(8,4), color="tab:grey");


apple_volume.dtypes


apple_volume["2021"].plot(kind="bar", color="tab:grey", legend=False);


from statsmodels.tsa.seasonal import seasonal_decompose


decompose_result = seasonal_decompose(apple_volume, model="multiplicative")


trend = decompose_result.trend

seasonal = decompose_result.seasonal

residual = decompose_result.resid


# decompose_result.plot();



plt.figure(figsize=(10,6))

plt.subplot(411)

plt.plot(np.log(apple_volume), label='Original', color="Grey")

plt.legend(loc='best')

plt.subplot(412)

plt.plot(trend, label='Trend', color="Grey")

plt.legend(loc='best')

plt.subplot(413)

plt.plot(seasonal,label='Seasonality', color="Grey")

plt.legend(loc='best')

plt.subplot(414)

plt.plot(residual, label='Residuals', color="Grey")

plt.legend(loc='best')

plt.tight_layout()






apple_volume.rolling(window = 12).mean().plot(figsize=(8,2), color="tab:grey", title="Rolling Mean over 12 month period");


apple_volume.rolling(window = 20).mean().plot(figsize=(8,2), color="tab:grey", title="Rolling mean over 20 month period");


apple_volume.rolling(window = 12).var().plot(figsize=(8,2), color="tab:grey", title="Rolling Variance over 12 month period");


apple_volume.rolling(window = 20).var().plot(figsize=(8,2), color="tab:grey", title="Rolling variance over 20 month period");


from statsmodels.graphics.tsaplots import plot_acf



plot_acf(apple_volume, title=None, color="Grey", vlines_kwargs={"colors": "Grey"});



#change the color of the vlines

plot_acf(apple_volume, lags=40, color="Grey", vlines_kwargs={"colors": "Grey"})

plt.show()










29 views0 comments

Recent Posts

See All

Python - Cryptographic algorithms

In order to examine the basic cryptographic mechanisms, I created the short python codes to generate the old encryption keys for basic...

Python - sktime

There are various libraries created for Python Time Series. Each of them has its own style, contributors and functions. Each library has...

Python - Basic regression comparison

Regression models are the principles of machine learning models as well. They help to understand the dataset distributions. The objective...

Comentarios


bottom of page